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Project Goals: The long-term goal for this Project is to realize secure biodesign strategies 

for microbial systems that operate in the dynamic abiotic and biotic conditions of natural 

environments, thus enabling systems-level and rational biological design for field use. 

There are several key challenges to incorporating safeguard systems at the design stage 

including: (1) lack of knowledge for how well safeguards operate across the broad set of 

environmental and physiological conditions that an organism experiences; (2) a need to 

integrate the safeguard with other cellular components so that it can sense and recognize 

specific signals from the intracellular or extracellular environment, and mediate a 

response; and (3) a need for rapid and reliable methods to engineer and optimize the 

biological components for safeguard construction and functional integration. To address 

these challenges, we propose to utilize recent advances in the fields of synthetic biology, 

artificial intelligence (AI), and automation, which together pave the way for a paradigm 

shift in our understanding of the ways that cellular function can be designed at the level of 

bacterial communities. 

 

The development of genetically engineered organisms necessitates the creation of secure and 

efficient biocontainment systems to safely contain such organisms and thus protect the 

environment, public health, and public perception of scientific research. Microbial safeguards 

based on controlled activation of a self-targeting CRISPR/Cas9 “self-destruct” mechanism are 

transferable between different organisms, cost-effective, and relatively easy to implement. 

However, the variability of CRISPR/Cas cleavage efficiency within a genome (and even within 

the same gene) [1, 2] represents a challenge in choosing efficient self-targeting guide RNAs 

(gRNAs) for self-destruction, particularly as gRNA efficiency also varies under different 

environmental conditions. We have developed a machine-learning prediction method, 

CRISPRAct, that predicts gRNA efficiency across different environmental conditions to assist in 

identifying candidate gRNAs for use in secure biosystems.  

We hypothesized that dynamic gene expression responses to varying physiological 

conditions would influence the cell-killing activity of the CRISPR/Cas9 system. To test this 

hypothesis, we screened the activity of a library of 180,000 gRNAs spanning the E. coli MG1655 

genome, and compared cell-killing activity to control sequences with no genomic matches 

(~20,000). We used the log2 fold change in cell population between time points as a proxy for 

gRNA cutting activity. To assess the influence of physiological conditions on gRNA cutting, 

screens were conducted as time courses in three growth conditions: rich media in exponential 

growth (LB-E); defined media in exponential growth (M9-E); and rich media in stationary phase 

(LB-S).  

In our initial library screens, we identified ~6,000 guides that were statistically 

overrepresented (via ANOVA testing) for physiology-specific functions. A small subset of 



gRNAs (174) were “outlier switches” that were statistical outliers in their outstanding killing 

activity in one or more physiological conditions, but were also statistical outliers in their lack of 

activity under the other physiological condition(s). Additionally, there is a marked difference in 

GC content between guides that efficiently kill in the M9 media versus the LB media: guides that 

have low activity in rich media (LB) but high activity in minimal media (M9) are GC rich, while 

guides that have high activity in rich media low activity in minimal media are very AT rich. 

Further, these “switch” guides tend to localize to specific areas in the genome – there are six 

regions that active rich media/inactive minimal media guides localize to, while inactive 

rich/active minimal media guides localize to three narrow regions and two broad swathes within 

the genome. We also identified a small but statistically significant correlation between the 

number of sites a gRNA can target in the genome, and the gRNA’s cutting efficiency, and 

correlations of varying strengths between the proximity of a gRNA target site to nucleoid-

associated protein binding motifs in the primary genomic sequence. Collectively, the initial 

round of 200k library screens generated an extensive dataset of more than 530,000 data points 

used to develop CRISPRAct.   

The CRISPRAct model is a two-part model that combines a natural language processing 

(NLP) model with a neural network (NN) model. The NLP model treats genomic sequences as a 

machine-interpretable “language”, while the NN model features now incorporate gRNA 

positional and physicochemical properties (including nucleoid-associated protein binding motif 

proximity) with environmental conditions. The outputs of these models are combined through 

polynomial regression to predict the percent fold change of guide prevalence after Cas9 

induction, as a proxy for the gRNA activity. CRISPRAct achieves a Mean Absolute Error of 0.39 

and Spearman Correlation Coefficient of 66.4%, beating the correlation from the previous state 

of the art (in a single environmental condition) by about 12%. Importantly, CRISPRAct 

exhibited a comparable Mean Absolute Error across physiological conditions- 0.51 in LB-E, 0.52 

in LB-S and 0.54 in M9-E. CRISPRAct is thus, to our knowledge, the first gRNA activity 

predictor capable of predicting behavior under different environmental conditions. We are 

currently assessing reproducibility of our screens. Empirically assessed correlations between 

screens varied by physiological condition, which informs our strategy to develop transfer 

learning. Ultimately, we anticipate that leveraging these physiological variations while training 

CRISPRAct will improve the robustness of our models and reduce costly retraining time as we 

move into novel genomic contexts.  

 

References 
1. Guo, J., et al., Improved sgRNA design in bacteria via genome-wide activity profiling. Nucleic Acids Res, 2018. 

46(14): p. 7052-7069. 

2. Gutierrez, B., et al., Genome-wide CRISPR-Cas9 screen in E. coli identifies design rules for efficient targeting. 

bioRxiv, 2018: p. 308148. 

 

This Project is funded by the Biological Systems Science Division’s Genomic Science Program, 
within the U.S Department of Energy, Office of Science, Biological and Environmental Research. 


